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Objectives  

•  In many turbocharger applications, there is a strong requirement for 

compact designs to reduce the size and cost of the installation  

•  This  can be achieved by reducing the impeller wheel diameter 

•  Extreme cases lead to the application of highly loaded mixed flow 

impellers 

•  The achievable performance level of such stages have not been fully 

explored 

• The objective was to assess the achievable performance levels in this 

relatively uncharted territory of the design space  
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Outline of this talk 

•  Conceptual design of the stage  

•   Preliminary design considerations 

•  Mechanical integrity  

•  Final impeller design and test data 

•  Conclusions   
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Stage pressure rise capacity 
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Modified Cordier diagram 
Casey, Zwyssig and Robinson (2010) 

Upper and lower boundaries of  

published Cordier lines  
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• Flow coefficient 

           𝜙 =  
𝑉0

𝑈2𝐷2
2

 
 

• Isentropic pressure rise coefficient: 

           𝜓 =
∆𝐻𝑠

𝑈2
2 =

𝐶𝑝𝑇01 𝜋
𝛾−1
𝛾 −1

𝑈2
2  

• For the same mass flow, pressure ratio and 

rotational speed, 𝜙 and 𝜓 increase as the 

diameter is reduced 

• There is a continuous reduction in the pressure 

rise capacity of the impeller as the flow 

capacity is increased and the stage becomes 

more axial      



Selection of the design space 

• Design targets for the current impeller: 

• Volume flow =1.02 m3/s  

• Pressure ratio = 2.65  

• Rotational speed = 77525 rpm 
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Modified Cordier diagram 
Casey, Zwyssig and Robinson (2010) 

120 mm 

110 mm 
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𝐷2 𝜙 𝜓 

120 mm 0.146 0.392 

110 mm 0.189 0.467 

100 mm 0.251 0.564 

Selected for the current design  



Geometrical constraints  
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• Several geometrical constraints were imposed on the design: 

• Impeller mean outlet diameter  

• Impeller axial length at the hub and shroud  

• Dimensions of the parallel wall diffuser    
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• Four different impellers, designed for the same duty and rotational speed are compared 

• The following parameters were controlled to produce the target pressure ratio: 

• Impeller tip diameter  

• Impeller backsweep angle  

• Mean absolute flow angle at impeller exit 

• fixed at 55º to match with vaneless diffuser 

• The stage polytropic efficiency was assumed to be 80% for all cases 

 

 Design cases 
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 Design cases 
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 Designs with different impeller diameters  
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• The difficulty of the design increases as 

the design space moves to the top-right 

corner of the diagram with  

• High specific flow 

• High specific pressure rise  
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Cm (m/s) 

Shroud curvature 
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• Through-flow calculations of the radial designs show acceleration of the flow on the 

shroud contour due to increased curvature with a risk of flow separation at sharp turn 

• Mixed flow design relieves this shroud curvature effect  



Impeller back sweep  
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• In a typical radial compressor about 50% of the pressure rise is due to the centrifugal 

effects  

• Lower backsweep is required to compensate for the reduction in centrifugal effects at 

high flow coefficient 



Impeller back sweep  
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• Casey-Robinson map prediction method shows flatter compressor characteristics and 

narrower operating range with low backsweep angles   



• In a typical centrifugal compressor:  

• Flow accelerates on the hub contour  

• Flow decelerates on the shroud contour  

• Deceleration on the shroud limits the total 

diffusion in the passage 

• Flow in the hub region is less sensitive to 

blade design  

Relative diffusion  
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• As the impeller diameter is reduced:  

• Higher relative diffusion is needed in the 

passage to further increase the pressure 

rise 

• Stronger diffusion on the shroud contour  

• Diffusion of the flow on the hub contour  

 

 

Relative diffusion  
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Relative diffusion  
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• Mixed flow design reduces the diffusion on the 

shroud but increases the diffusion on the hub  

• More balanced diffusion on the hub and 

shroud contours   

• In axial compressors the hub loading becomes 

the limiting factor  
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•  Mechanical integrity  

•  Final impeller design and test data 
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Mechanical integrity 
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• Mechanical design criteria:  

• Maximum allowable stress should not be exceeded  

• Vane first eigenmode frequency should be above 4EO frequency  

• Burst margin criteria should not be exceeded   

• Aerodynamic design requirements:   

• Small camber in the front part of the tip section to control the supersonic flow 

(lower vane natural frequencies) 

• Aerodynamic optimization along the span to control the shock losses (higher 

stress in the blade)  

• Less flexibility in aerodynamic design of the hub section due to high speed 

flow and high relative diffusion near the hub 

• Limitation on the number of the vanes, vane thickness and position of the 

splitter vanes on the hub  



Mechanical integrity 
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• The compromised design:  

• Thick blades with compromised aerodynamic performance at lower span  

• Backward swep near the hub to reduce the stress  

• Splitter leading edge placed further downstream to avoid strong flow 

acceleration near the hub   

Stress distribution in the impeller  
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Final impeller design  
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• Final impeller:  

•  100 mm mean outlet diameter  

•  9+9 vanes  

•  Backsweep angle of 28°  

•  Forward swept at the tip  

•  Curved line generators were used (impeller 

was manufactured by point milling) to 

allow better control of the high speed flow 

along the span  

 

 



• 1D map predictions agree very well with the test results   

• A peak total-to-total isentropic efficiency of above  80% was achieved  at a pressure 

ratio of 2.75 

• The isentropic pressure rise was 6% higher than the design target 

Test results  
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• Surge margin at design speed  =  

                       (Design flow rate – Surge flow rate) / (Design flow rate) = 6% 

• Map Width Enhancement devices may be necessary to widen the operating range  

Test results  
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Conclusions 

•  The conceptual design and testing of a mixed flow compressor stage 

with an extremely high flow and pressure rise is described.  

• The preliminary design methods identified many of the difficulties 

expected from such an unconventional design, in particular the need 

for a mixed flow stage, the expected narrow operating range and the 

difficult mechanical issues.  

• The test data showed that an efficiency level of above 80% is 

achievable in this extreme design space 

• The final testing of the stage identified the need for some form of 

recirculating bleed system to increase the operating range of the 

stage.  
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