Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017 June 26-30, 2017, Charlotte, NC, USA

Free-Form Versus Ruled Inducer Design in a Transonic Centrifugal Impeller

H. Hazby

C. Robinson

M. Casey

PCA Engineers Ltd., UK

D. Rusch R. Hunziker

ABB Turbo Systems Ltd., Switzerland

Outline of this talk

- Background and objectives
- Numerical procedure
- Impeller designs
 - Datum impeller
 - Free-form impellers
- Test results
- Part speed operation
- Conclusions

Ruled impeller design

- Commonly used to allow manufacturing by Flank Milling
- Surfaces are defined using 'straight lines' or 'ruled elements'
- Angle, thickness and lean distributions are specified only on hub and shroud surfaces

Lower manufacturing and design costs

Less control over the geometry in the inner part of the blade

Free-form impeller design

- Removes the geometrical constraints from the inner part of the blade
- Non-linear angle, thickness and lean distributions can be specified at several span-wise sections
- Needs to be manufactured by Point Milling
 - Higher manufacturing and design costs

Control over the geometry in inner part of the blade

Free-form vs ruled impeller

- In high speed applications, where shock losses are significant, careful control of the geometry in the inner part of the blade can be beneficial
- Lack of back-to-back studies to determine the performance benefits of free-form impeller designs
- The objective of the current work was to carry out a systematic comparison between ruled and freeform designs for a transonic compressor
- Designed by the same individual to ensure consistent design philosophy

Hazby et al (2014)

Elfert et. at (2016)

Outline of this talk

- Background and objectives
- Numerical procedure
- Impeller designs
 - Datum impeller
 - Free-form impellers
- Test results
- Part speed operation
- Conclusions

Numerical procedure

- Impeller blades were designed in ANSYS Bladegen and checked for mechanical integrity using ANSYS Mechanical
- ANSYS CFX was used for single passage steady state calculations
- Structured mesh (ANSYS Turbogrid) for impeller and diffuser with 500k and 200k nodes, respectively
- Unstructured mesh with 500k nodes and 10 prism layers inside the volute
- k-ε Turbulence model with scalable wall functions

Outline of this talk

- Background and objectives
- Numerical procedure
- Impeller designs
 - Datum impeller
 - Free-form impellers
- Test results
- Part speed operation
- Conclusions

Datum impeller

- Ruled design, using straight line generators
- A high pressure ratio impeller for Marine Turbocharger applications
- Inducer tip relative Mach number of 1.4 at the design point
- Vaned diffuser
- High efficiency levels, representative of the state-of-the-art performance
- Suitable to be used as a datum

9

Datum impeller

- 9+9 vanes and 17° backsweep angle
- LE is swept backward for mechanical reasons
- Independent splitter design
- Low curvature in the uncovered part of the passage at the tip
- The tip section is not fully started at the design condition with a bow shock standing upstream of the main blade leading edge

Contours of relative Mach number at 90% span

Forward swept impeller

- Forward LE sweep in the upper span
- · Increased meridional chord at the tip
- Similar design at TE (slightly higher work)
- Forward sweep of the LE generally:
 - Moves the shock further downstream and reduces the loading at the tip
 - Reduces 1F frequency. It may need thicker blade profiles at lower part

Barreled forward swept impeller

- Blade profiles at hub and shroud are the same as the forward swept impeller
- Increased meridional chord at 50% of the span
- 12% higher 1F frequency compare to the Forward swept impeller

Throat width distribution

- All three blades have similar throat width distribution in the upper part of the span
- Swept impellers have smaller throat area near the hub

Contours of M_{rel} and Entropy at 95% span

• Swallowed shock with reduced losses at the tip of the swept impellers at design condition

Datum

ENGINEERS

Forward swept rel 1.65 1.48 1.32 1.15 0.99 0.82 0.66 0.49 0.33 0.16 0.00

Barrelled forward swept

Contours of static pressure and flow vectors near SS

• Weaker shock and reduced radial migration of the boundary layer flow in the inner part of the barrelled forward swept impeller

Impeller performance

- No significant difference between the performance of the swept impellers
- Swept impellers showed about 1%
 higher total-to-total efficiency compared with the datum impeller
- No significant impact of the LE sweep on the operating range at the design speed

Diffuser performance

- Inducer design had relatively small effect on the flow at the impeller outlet
- Similar diffuser pressure recoveries

Further studies

- Application of the LE sweep changes :
 - The length of the meridional chord at the tip
 - The distribution of the inlet angle and throat area along the span
 - The meridional profile of the LE
- An attempt has been made to study these effects in isolation

Further studies

- <u>Ruled</u> Extended chord impeller
 - The tip section is the same as the swept impeller
 - The hub section is moved forward

- <u>Free-form</u> **Unswept** impeller
 - The throat width and inlet angle distributions are the same as the Barrelled forward swept impeller

Further studies

- <u>Ruled</u> Barrelled forward swept impeller
 - Same tip profile as the free-form version
 - At the hub, blade thickness was adjusted to achieve the same flow capacity
 - 4% lower 1F frequency and 57% higher hub stress than the free-form version

Barrelled forward swept

Contours of M_{rel} at 95% span

- Small effect of the chord length on the tip flow field
- Geometry in the inner part of the blade affects the flow at the tip
- LE sweep was less effective in the ruled impeller

1.32 1.15

0.99

0.82

0.66

0.49

0.33

0.16

0.00

Contours of static pressure and flow vectors near SS

Impeller performance

- Unswept impeller showed 0.5% higher efficiency than the datum ruled design
- Relatively smaller effect of the chord length and LE sweep when applied to a ruled design
- Leading edge sweep should be viewed as a design parameter whose effects depend on other geometrical parameters

Outline of this talk

- Background and objectives
- Numerical procedure
- Impeller designs
 - Datum impeller
 - Free-form impellers
- Test results
- Part speed operation
- Conclusions

Tested impellers

- The Datum and the Barrelled forward swept impellers were manufactured and tested at 100%, 90%, 70% and 40% of the design speed
- The impellers were tested with and <u>without</u> casing treatment
- Same stationary components were used

Measured performances

- Stage with the swept impeller shows:
 - 0.5% higher efficiency and same range at 100%speed
 - 1.2% higher efficiency and 5.2% wider range at 90% speed
 - 1.6% higher efficiency but 17% narrower range 70% speed
 - 0.9% higher efficiency and the same range at 40% speed

CFD vs. Measured performances

- Calculations suggest 1% improvement for swept impeller at design speed
- Trend is captured well especially at part speed

Outline of this talk

- Background and objectives
- Numerical procedure
- Impeller designs
 - Datum impeller
 - Free-form impellers
- Test results
- Part speed operation
- Conclusions

Impeller only performance

- Diffuser is matched to the impeller at the design speed
- At part speed, the impeller is forced (by diffuser choking) to operate on the left hand side of its peak efficiency

90% of the design speed

- Similar flow fields at the tip
- Reduced loading and weaker shock at the tip of the swept impeller results in higher efficiency levels

70% of the design speed

- Datum impeller: Conventional inlet recirculation at the tip
- Swept impeller: Separation from 50%-80% span near LE at P1

Large separation in the upper part of the span as the mass flow is reduced

ENGINEERS

31

40% of the design speed

- Conventional inlet recirculation at the tip of the both datum and swept impellers
- No significant difference in performance of the impellers

Conclusions

- A barrelled forward sweep of the leading edge, offered better mechanical properties while maintaining the performance benefits of the forward swept impeller
- The observed performance improvements are combination effects of LE sweep and other geometrical parameters such as angle and throat area distributions
- The swept impeller showed 0.5% to 1.6% higher efficiency levels compared with the datum impeller depending on the operating speed

