Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 June 15 – 19, 2015, Montréal, Canada

Effects of Blade Deformation on the Performance of a High Flow Coefficient Mixed Flow Impeller

H.R. Hazby

I. Woods

M.V. Casey

PCA Engineers Ltd., UK

R. Numakura H. Tamaki

IHI Corporation, Japan

Outline of this talk

- Blade deformation in axial and radial compressors
- Objectives and research approach
- Test results
- Numerical investigations
- Conclusions

Blade deformation in axial fans

- The blade sections are normally stacked along the centre of gravity
- The higher stagger angle at the blade tip results in positive lean (lean in the direction of rotation) in the front part and negative lean in the rear part

Blade deformation in axial fans

- Under centrifugal loads, the tip section moves opposite to the direction of rotation
 - Reduced stagger and increased throat area (blade "**untwist**") ٠
- "Pressure untwist" at low mass flow rates

Blade deformation in axial fans

- Why is this important?
 - It affects the performance by changing the position of the shock at the tip
 - It affects the flow capacity by changing the throat area
- Knowledge of geometry under running conditions is essential
- Prediction of "unrunning" manufacturing geometry is a routine practice

Blade deformation in radial impellers

- High stresses can occur in LE/hub corner
- To avoid excessive stress levels, blades are designed with zero or small lean at the LE
- Larger inlet blade angle at the tip results in negative lean downstream the LE

Blade deformation in radial impellers

- Under centrifugal loads, the tip section moves in the direction of rotation
 - Increased inlet angle and reduced throat area (blade "twist")
- Pressure forces act similar to that in axial passages (pressure "untwist")

Blade deformation in radial impellers

- Changes in blade tip clearance:
 - Reduced at inlet
 - Reduced or increased at outlet, depending on the design
- The effects of blade deformation are normally ignored in the radial impeller design
 - Manufactured geometry is the geometry analysed in CFD

Outline of this talk

- Blade deformation in axial and radial compressors
- Objectives and research approach
- Test results
- Numerical investigations
- Conclusions

Objectives

- A highly loaded transonic mixed flow impeller, designed to explore performance potentials outside normal design space (GT2014-25378)
 - Forward LE sweep
 - Spanwise optimization of camber
 - and throat area

Objectives

- Large displacements were observed at the tip section, under the effect of centrifugal loads at the design speed
- The effects of blade deformation on performance have not been fully investigated for radial and mixed-flow impellers
- The objective was to investigate these effects in the current impeller

ENGINEE

Approach

Two impeller geometries have been manufactured and tested:

1. "Running" geometry (R2):

Is the design geometry, analysed in CFD

2. "Unrunning" or "cold" geometry (UR2):

Matches the "running" geometry at the design speed, under the effect of centrifugal loads

unrunning

running

"Unrunning" geometry (UR2)

- Predicted using in house FE software
- Only centrifugal loads were taken into account
- The effects of pressure and thermal loads on blade deformation were ignored

Outline of this talk

- Blade deformation in axial and radial compressors
- Objectives and research approach
- Test results
- Numerical investigations
- Conclusions

Test procedures

- Strong effects of the recirculating casing treatment on the impeller performance were expected
- Both impeller geometries were tested
 <u>with</u> and <u>without</u> casing treatment

Performance tests with smooth casing

- Unrunning impeller geometry
 - 1.4% lower pressure ratio and 0.38% lower efficiency at design speed
 - Same pressure ratio but 0.4% lower efficiency at low speed

Performance tests with casing treatment

- Unrunning impeller geometry
 - No significant difference at the design speed
 - Same pressure ratio but lower efficiency at low speed

Outline of this talk

- Blade deformation in axial and radial compressors
- Objectives and research approach
- Test results
- Numerical investigations
- Conclusions

Numerical setup

- Single passage steady state calculations were performed using ANSYS CFX
- Structured mesh with 450000 nodes and 6 points inside the tip gap was generated using ANSYS Turbogrid

19

 k-ε Turbulence model with scalable wall functions

Geometry definition in CFD

Manufactured R2 and UR2

No blade deformation

geometries

CFD

Geometry definition in CFD

"running" geometry

- Effects of blade deformation:
 - At the design speed, the deformed impeller has 2.5% higher pressure ratio and 0.7% higher efficiency

"running" vs. "unrunning" geometries

- The trend of variations is consistence with measurements
- **Running** geometry has 2.5% higher pressure ratio and 0.7% higher

Effect of rotation on blade twist

- Deformation at tip section of impeller R2 at design speed
 - 1.3° increase in inlet blade angle
 - 1.6% reduction in throat width at the tip

Variation in tip clearance

- Effect of rotation on tip clearance
 - Impeller R2 has a constant tip gap of 0.5mm at zero speed
 - Impeller UR2 has a constant tip gap of 0.5mm at the design speed

Tip clearance or blade twist?

- The tip clearance size of impeller UR2 was prescribed to impeller R2
 - Impeller flow capacity is affect by twist
 - Peak performance is mainly affected by tip gap size

Pressure deformation

- Predicted surfaces pressures were used to calculate the resultant tangential deformation ($\delta_{\rm P}$) at the blade tip
- Centrifugal deformation (δ_{CF}) was calculated at each speed
- The effect of pressure deformation increases from choke to surge
- Centrifugal deformation becomes more dominant as the speed increases

Conclusions

- The radial impellers experience "blade twist" as opposed to "blade untwist" in axial compressors due to different lean distribution
- Blade deformation in the current impeller:
 - Increased pressure ratio
 - Increased efficiency
 - Reduced flow capacity
- Changes in peak performance were mainly due to changes in tip clearance size
- Changes in flow capacity were mainly due to the blade twist

